
Plan More, Debug Less: Applying
Metacognitive Theory to AI-Assisted

Programming Education

Tung Phung1(B) , Heeryung Choi2 , Mengyan Wu3 , Adish Singla1 ,
and Christopher Brooks3

1 MPI-SWS, Saarbrücken, German y
mphung@mpi-sws.org

2 University of Minnesota, Twin Cities, USA
3 University of M ichigan, Ann Arbor, USA

Abstract. The growing adoption of generative AI in education highlights
the need to integrate established pedagogical principles into AI-assisted
learning environments. This study investigates the potential of metacog-
nitive theory to inform AI-assisted programming education through a hint
system designed around the metacognitive phases of planning, monitor-
ing, and evaluation. Upon request, the system can provide three types of
AI-generated hints–planning, debugging, and optimization–to guide stu-
dents at different stages of problem-solving. Through a study with 102 stu-
dents in an introductory data science programming course, we find that
students perceive and engage with planning hints most highly, whereas
optimization hints are rarely requested. We observe a consisten t associa-
tion between requesting planning hints and achieving higher grades across
question difficulty and student competency. However, when facing harder
tasks, students seek additional debugging but not more planning support.
These insights contribute to the growing field of AI-assisted programming
education by providing empirical evidence on the importance of pedagog-
ical principles in AI-assisted learning.

Keywords: Programming Education · Feedback Generation ·
Metacognitive T heory · Generative AI

1 Introduction

Recent advancements in generative AI have sparked significant interest i n the
field of programming education [10, 25, 34, 45], especially in the generation of
personalized feedback [23, 35, 45, 48]. However, existing studies often focus on
technical correctness [15] or student preference [25, 30] and overlook the impor-
tance of grounding AI-generated feedback in well-established pedagogical theo-
ries, potentially limiting t he effectiveness of such feedback in student learning.

To address this gap, we propose enhancing AI-generated hints through t he
use of metacognitive scaffolds [24, 40, 44]. Metacognitive scaffolds are instruc-
tional support mechanisms that help student s plan, monitor, and evaluate their
c⃝ The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. I. Cristea et al. (Eds.): AIED 2025, LNAI 15877, pp. 3–17, 2025.
https://doi.org/10.1007/978-3-031-98414-3_1

4 T. Phung et al.

▶

P

D

O

● ● ● ● ●

Fig. 1. Overview of requested hints (725 hints in 366 student-question pairs). Through-
out the paper, P, D, and O denote a planning, debugging, and optimization hint,
respectively. ! marks the beginning and • marks the end of problem-solving. The
graph displays sequences of hints, link sizes depicting counts.

learning processes while fostering self-regulation and strengthening a daptive
problem-solving skills [14, 18, 39]. These scaffolds are crucial in programming
education, where students often struggle with s tructuring approaches to solv-
ing (planning) [11, 32], identifying and fixing errors (monitoring) [31], and opti-
mizing solutions (evaluation) [38]. By grounding AI-generated hints in these
metacognitive phases, we aim to provide not only technical assistance but also
structured yet flexible support to promote students’ metacognitive development.
Specifically, we design three corresponding types of hint: planning, debugging,
and optimization, which we collectively refer to as AI-generated hints based on
Metacognitive Scaffolds (AIMS hints). To foster students’ metacognitive aware-
ness of their p roblem-solving stages, we adopt a learning-assisted approach in
which we set a quota for total hints per question and let the students decide for
themselves which hint type to request based on their needs. Figure 1 provides an
overview of how students utilized these hints in our deployment of this system.

Our study is centered on the following research questions:

RQ1: How do AIMS hints impact student s’ help-seeking behaviors?
RQ2: How do those behaviors relate to students’ problem-solving performance?

We examine these questions across all students and subsets based on question
difficulty and student competency levels. Our contributions are as follows:

• Hint and system design. Using metacognitive theory, we design a hint
system that offers three types of AIMS hints: planning, debugging, and opti-
mization, and evaluate these hints through a classroom field study.

• Student behavior analysis. We analyze student help-seeking behaviors,
revealing trends such as students value planning hints highly but often under-
utilize them in favor of debugging hints, especially when facing harder tasks.

• Student performance analysis. We find that planning hints are linked to
better performance, notably for higher-competency students.

• Code release. To enhance reproducibility and aid future research, we pub-
licly release the implemen tation of our AIMS hint generation techniques.

By integrating metacognitive scaffolds into AI-generated hints, this work not
only contributes to a deeper understanding of how personalized AI support can
enhance programming education but also provides practical insights for designing
pedagogically-grounded educational AI systems.

Applying Metacognitive Theory to AI-Assisted Programming Education 5

2 Related Work

Metacognitive Scaffolds and Self-regulated Learning. Many efforts have
been made to incorporate metacognitive scaffolds in programming education.
The benefits of metacognition on learning b ehaviors and performance have been
consistently shown through research [8, 37, 40, 43, 44, 49]. For example, Vieira
et al. [43] found that novice computer science students wrote longer self-
explanation in-code comments compared to experienced peers because they sa w
self-explaining as a learning opportunity. Choi et al. [8] showed that prompting
reflection after programming tasks was correlated with better learning percep-
tion and performance on both immediate and delayed post-tests. Yilmaz and
Yilmaz [49] showed that students who received personalized metacognitive feed-
back weekly engaged significantly more in a Computer I course. Inspired by these
insigh ts, we ground in metacognitive theory to design AI-generated scaffolding
hints.

AI-Generated Feedback in Programming Education. Recent research
has explored AI-generated feedback in programming education [45, 50]. Phung et
al. [35] found that providing symbolic information such as the buggy output and
fixed programs in prompts can improve the quality of AI-generated debugging
hints. Lohr et al. [23] showed that AI can be directed to provide feedback that
focuses on specific aspects, such as knowledge about task constraints or per-
formance. Xiao et al. [48] explored students’ perceptions of hints with varying
detail levels, revealing that their effectiveness depends on context and that high-
quality next-step and debugging hints do not always facilitate student progress.
Building on this line of work, our study employs AI techniques that utilize sym-
bolic information to generate different types of hints tailored to students’ needs.
Our hint system utilizes a button-based interface, as opposed to a chat-based
one [25, 42], since the latter’s pedagogical e ffects are still unclear.

Students’ Help-Seeking Behaviors with Automated Hints. Several
studies have examined how students interact with automated hints [21, 47]. Mar-
wan et al. [28] found that data-driven next-step hints improved immediate per-
formance, and when paired with self-explanation prompts, led to learning gains.
Expanding on this, we investigate the a ssociation between AI-generated hints
and student performance. Price et al. [36] found that the quality of initial hints
positively correlates with help abuse. To address this, we set a fixed quota for h int
use to prevent over-reliance on help. Wiggins et al. [47] characterized student’s
hint-seeking behavior along two axes of elapsed time and c ode completeness,
while Bui et al. [7] explored different hint formats, including text and skeleton
code. Our study extends this research by analyzing additional aspects, including
engagement, perception, and hint request sequence in the context of AIMS hints.

AI Support and Metacognition. Recently, concerns have arisen that AI
technologies might reduce students’ engagement in metacognitive practices, a
concept referred to as Metacognitive laziness [13]. Our work explicitly addresses
this by integrating metacognitive theory into AI-generated hints, aiming to sup-
port self-regulated learning (SRL) skills development rather than replace it.

6 T. Phung et al.

Fig. 2. AIMS hint types with the descriptions provided to students.

3 Study Setup

This section outlines the study context, our proposed AIMS hints, the deploy-
ment, and methods t o estimate question difficulty and student competency.

3.1 Course and Studen ts

Course Overview. This study was conducted in a Python-based introductory
data science course as part of an online Master’s program at the University of
Michigan. The four-week course featured weekly assignments covering key topics
such as regular expressions, pandas data frame manipulation, Excel processing,
and CSV file handling. Each assignment, delivered as a Jupyter notebook, con-
sisted of three to four programming questions (14 in total), requiring students
to complete Python functions for specific tasks. Assignments were due weekly,
and students could submit multiple times before the deadline, with their highest
score counting toward the final grade.

Student Overview. Overall, 102 students enrolled in the course: 71 males,
27 females, and four unspecified. Their ages range from 18 to 58 (mean = 32,
stddev = 8.5). Requesting hints was voluntary, with no additional incentives
or penalties, and instructors were unaware of whether or how often students
requested hints. Students were informed about the research aspect of the initia-
tive, including anonymous d ata recording and the AI-generated nature of hints
which might not always be correct. This study was deemed exempt from oversight
by the Institutional Review Board under application number HUM00251143.

3.2 Hint Types and AI-Generation T echniques

AIMS Hints. We mapped the three metacognitive phases of planning, moni-
toring, and evaluation onto disciplinary terms of planning, debugging, and opti-
mization. Each hint type was designed with a specific goal: planning hints assist
in initial strategy formulation, debugging hints aid in issue identification and r es-
olution, and optimization hints foster code quality reflection and improvement
for students aiming to exceed assignment expectations (see Fig. 2).

Techniques for Generating AIMS Hints. Each hint type is generated by
a technique, all with careful consideration of incorporating “guard-rails” instruc-

Applying Metacognitive Theory to AI-Assisted Programming Education 7

Fig. 3. Interaction between a student and our hint system for requesting a hint.

tions [22] to prevent the AI model (GPT-4o [19]) from revealing t he solutions.1
Our technique for debugging hints is adapted from previous studies that showed
good performance in data science programming education [35, 50]. It follows a two-
phase process: First, it extracts symbolic information including (1) the buggy out-
put (obtained from running the student’s program) and (2) a repaired program
(obtained fromrequestingtheAImodel).Second, ituses this informationalongwith
the student’s code and any reflection (detailed in Sect. 3.3) to prompt the AI to gen -
erate an explanation (leveraging Chain-of-Thought [46]) and a Socratic-style hint
for a single bug (to be provided to the student). Since there were no existing tech-
niques for generating high-quality planning and optimization hints, we adjust this
technique for the other two hint types. For planning hints, we modify the prompt’s
language to focus on problem-solving steps rather than debugging and remove the
repaired p rogram to shift emphasis away from errors. For optimization hints, we
follow a similar two-phase process but replace the repaired program with an AI-
generated optimized program–focusing on short running time while still requiring
correctness.

3.3 Hint System and Studen t Interaction

AIMS Hint System. We develop a hint system consisting of two main compo-
nents: (1) a backend server for generating hints using the techniques introduced in
Sect. 3.2 and (2) a JupyterLab extension as the interface for interacting with stu-
dents. To prevent over-reliance on AI and foster students’ metacognitive awareness,
we set a quota limit of five hints per question and allow students to choose the type
of hint to request. The extension displays three buttons below each assignment
question, enabling students to request planning, debugging, or optimization hints.
Before the course, the instructor intro duced the hint systemanddemonstrated how
to use it to the class. Students could always click a “?” button located next to the
hint buttons to viewdescriptions of the hint types (as inFig. 2). The first time a stu-
dent requests a hint, a “Consent” pop-up informs them about the research aspect of
the system (see Sect. 3.1). Students can only proceed to request hints after agreeing
to this notice. To ensure easy access to previous hints, each hint is stored in a col-
lapsible widget below the corresponding question’s hint buttons. When a studen t
reopens a notebook, these widgets are collapsed by default and can be expanded
with a click to revisit previous hints.

Student Interaction. Figure 3 demonstrates the interaction between stu-
dents and our system for requesting hints. When requesting hints, students are
encouraged to reflect on their progress or issues. These reflections serve dual pur-
poses: promoting students’ engagement by prompting them to articulate their

1 https://github.com/machine-teaching-group/aied2025-plan-more-debug-less.

8 T. Phung et al.

Fig. 4. Examples of hint types: student reflections and received hin ts in the study.

thoughts and providing the AI model with context to generate a relevant hint.
Once the backend generates a hint, it is sent back to the interface and displayed
to the student, accompanied by two feedback buttons: “thumb up” and “thumb
down”, allowing the student to rate the hint as helpful or unhelpful, respectively.

3.4 Data C ollection

We collected comprehensive data on student behavior and performance, includ-
ing hint requests and revisits, assignment submissions, and final solving status.
Of 102 students, 101 (99%) a ctivated the JupyterLab extension, and 76 (75%)
requested at least one hint. Figure 4 shows examples of provided hints. Figure 5
provides a breakdown of students and hints across 14 assignment questions.

3.5 Question Difficulty and Studen t Competency

To analyze the impacts of AIMS hints across varying conditions, we categorize ques-
tions by difficulty and students by competency. Question difficulty is estimated
using past student performance in two prior iterations of the same course: the easier
(harder) group consists of four highest- (lowest-) scored questions, one per assign-
ment. Student competency is approximated based on the number of attempts until
solving all questions in Assignment 1: fewer attempts indicate higher competency.
We designate the top third (34 students) as the higher-competency group and the
bottom third (34 students) as the lower-competency group. Since Assignment 1
served as a proxy, it is excluded from competency-based analyses.

Applying Metacognitive Theory to AI-Assisted Programming Education 9

Fig. 5. Overview of students and hint requests. The orange dots and the right y-axis
indicate the number of students who requested at least one hint (of any type) for
each question. The stacked bars and the left y-axis represent the total number o f hint
requests per question, categorized by AIMS hint types. In total, students requested 258
planning, 411 debugging, and 56 optimization hints. (Color figure online)

4 RQ1: Impacts of AIMS Hints on Help-Seeking Behavior

This section addresses RQ1 by outlining our analysis setup (Sect. 4.1), presenting
results (Sect. 4.2), and discussing key findings (Sect. 4.3).

4.1 Analysis S etup

To evaluate the impact of AIMS hints on student help-seeking behavior, we
decompose RQ1 into three sub-questions: [RQ1a]: How do students engage with
and perceive AIMS hints?, [RQ1b]: What behavioral patterns emerge in students’
interactions with AIMS hints?, and [RQ1c]: How do these patterns vary based
on question difficulty and student competency?

For RQ1a, engagement is measured by contemplation time and hint revisits,
while perception is assessed through students’ hint ratings. The contemplation
time is defined as the time between receiving a hint and performing the next
major action (i.e., requesting another hin t or submitting a solution). To exclude
irrelevant delays such as students taking a break, only durations up to t = 1
hour are considered for analysis.2 Hint revisits are quantified by counting the
number of times a student expands hint widgets to view previous hints.

For RQ1b, we analyze the sequence of requested hint types, the frequency
of a type being present in the sequence, the first-requested type, and the most-
requested type. Each of these is counted based on all student-question pairs.

For RQ1c, we examine how hint sequences and the presence of hint types
vary across question difficulty and student competency (as defined in Sect. 3.5).

4.2 Results

Engagement and Perception of AIMS Hints. Figure 6 summarizes engage-
ment and perception results. A Mood’s median test [29] reveals a significant
2 We note that other choices, such as t = 0.5 or t = 2 hours also yield similar results.

10 T. Phung et al.

(a) Contemplation time (b) Hint revisits (c) Hint rating

Fig. 6. Results for RQ1a: Student engagement and perception of hints. (a) demon-
strates the amount of time students contemplated after receiving a hint. (b) shows the
n umber of revisits per hint. (c) presents the average rating of hints.

(a) Hint sequence (b) Type present (c) First type (d) Majority type

Fig. 7. Results for RQ1b: Patterns of student hint usage. In all plots, y-axis represents
the counts of student-question pairs. (a) displays the most common hint sequences;
(b), (c), and (d) show the number of times a hint typ e is present in a sequence, is the
first in a sequence, and is the majority in a sequence, respectively.

difference in contemplation time across hint types (p = 0.002). Post ho c pair-
wise comparisons with Bonferroni correction [6] confirm that the contemplation
time on planning hints (median = 14.0 minutes) is longer than debugging hints
(median = 7.1 minutes, p = 0.006). For hint revisits, a Kruskal-Wallis H test [20]
indicates a significant difference (p = 0.009), with Dunn’s post hoc tests using
Bonferroni correction confirming more revisits for planning than for debugging
hints (p = 0.015). Similarly, a χ2 test [33] detects a significant difference in
hint rating (p = 0.003), with pair-wise comparison using a Bonferroni correction
confirming higher ratings for planning than for debugging hints (p = 0. 005).
Optimization hints, with smaller sample sizes (33–56), do not show any signifi-
cant differences.

Help-seeking Patterns. Fig. 7 shows students’ help-seeking patterns. Nine
out of ten most frequent hint sequences consist of a single hint type, with
debugging hints being requested the most, followed by planning hints, while
optimization hints were rarely used. When both planning and debugging hints
were sought, planning hints were more likely to be requested first, aligning with
metacognitive phases [39]. Notably, 43% of optimization hints (24 out of 56)
were requested in isolation. Upon investigation of students’ code and reflections,
these cases often belonged to high-performing students who solved without hints
and then sought further improvements. However, some other students seemed to

Applying Metacognitive Theory to AI-Assisted Programming Education 11

mistakenly request these optimization hints when they n eeded debugging sup-
port.

Behavioral Patterns by Difficulty and Competency. Figure 8 com-
pares help-seeking behaviors based on question difficulty (Figs. 8a and 8b) and
student competency (Figs. 8c and 8d). As question difficulty increases, students
request more debugging hints, while planning hint usage remains constant. In
contrast, optimization hints were requested more often for easier questions (in 20
student-question pairs) than harder ones (10 pairs). Regarding student compe-
tency, higher-competency students request more hints overall, particularly plan-
ning hints, compared to their lower-competency peers.

(a) Easier questions: 181 hints. (b) Harder questions: 225 hints.

(c) Lower-competency students: 160 hints. (d) Higher-competency students: 200 hints.

Fig. 8. Results for RQ1c: Behaviors by difficulty and competency. In each subfigure,
the left shows Hint sequence and the right shows Type present. (a) and (b) present
results by difficulty while (c) and (d) present results by competency.

4.3 Discussions

Our findings reveal key patterns in students’ help-seeking behavior and hint
usage. The high engagement and positive perception of planning hints suggest
that structured guidance at the planning stage can be highly b eneficial. However,
it remains overlooked in many existing feedback systems, which primarily focus
on debugging support [30, 35]. By emphasizing planning, educators and AI sys-
tems could better scaffold students’ problem-solving processes and reduce inef-
ficient trial-and-error cycles. Despite the high perceived value of planning hints,
students requested debugging hints more often, especially for harder questions.
This suggests reactive rather than proactive strategies [1, 17, 26], where students
rely on troubleshooting rather than strategic planning. While debugging is an

12 T. Phung et al.

essential skill, over-reliance on it may hinder deeper conceptual understanding.
Future AI-assisted learning environments should promote proactive planning,
encouraging students to articulate their problem-solving strategies before coding.
Optimization hints, which were aimed at mastering skills rather than improving
grades, were underutilized (8% of total requests). Further research is needed to
make them more attractive and effective, fostering student mastery learning [5].

Students predominantly requested a single hint type per question, indicating
a potential lack of metacognitive awareness–they may not always recognize when
they need planning, monitoring, or evaluation support [24, 41]. The variation in
hint-seeking behavior by question difficulty further reinforces this issue. While
debugging hints were requested more for harder questions, planning hin t usage
remained unchanged, even though structured planning is particularly useful for
complex tasks [12]. Intelligent tutoring systems could use adaptive prompts or
reflective exercises to help students better assess their difficulties [2, 8]. Addition-
ally, designing interventions that make planning more explicit–such as requiring
students to d raft pseudocode before coding–could help bridge the gap.

The difference in hint usage between higher- and lower-competency students
may provide further insights into how metacognition contributes to learning.
While some studies reported that weaker students require more help [3, 4], our
results show that higher-competency students requested more hints overall, espe-
cially planning hints. This may be because they are more persistent in problem-
solving and thus, are more willing to engage with available support. In contrast,
lower-comp etency peers may be more prone to give up earlier. This difference
likely contributes to performance disparities, as discussed next.

5 RQ2: AIMS Hints and Performance

Building on the behavioral patterns identified in RQ1, this section addresses
RQ2: ho w those patterns relate to student problem-solving performance.

5.1 Analysis S etup

We break RQ2 into two sub-questions: [RQ2a]: How do students’ interaction pat-
terns with AIMS hints relate to their problem-solving performance? and [RQ2b]:
How do these effects vary by question difficulty and studen t competency? To
answer these, we focus on students’ final solving rates in relation to hint usage.

5.2 Results

Hint Usage and Overall Performance. As shown in Fig. 9a, requesting plan-
ning hints is associated with significantly higher performance than no hints
(p = 0.013). Other types (debugging, optimization) show no significant effects.

Performance Variation by Difficulty and Competency. Across all dif-
ficulty and competency conditions, planning hints are consistently (even though
not always significantly) associated with higher performance than no hints (see

Applying Metacognitive Theory to AI-Assisted Programming Education 13

(a) Stu: all, Ques: all (b) Stu: all, Ques: easy (c) Stu: all, Ques: hard

(d) Stu: lower, Ques: all (e) Stu: lower, Ques: easy (f) Stu: lower, Ques: hard

(g) Stu: higher, Ques: all (h) Stu: higher, Ques: easy (i) Stu: higher, Ques: hard

Fig. 9. Results for RQ2: Performance by help-seeking behavior. The dashed line depicts
the average overall performance of the condition; the five bars represent no hint
requested, any type requested, and each type present in the sequence of requested
hints (i.e., Type present). The vertical lines indicate standard errors; * indicates a
significant difference in performance to the ‘No’ group w.r.t a χ2 test with p < 0.05,
while ** indicates p < 0.01. Y-axes are plotted from 50%.

Fig. 9). In contrast, optimization hints are linked to lower performance on easier
questions (p = 0.039), particularly by lower-competency students (p = 0.003). A
closer examination of code and reflections reveals that in most of these cases, stu-
dents misused optimization hints for debugging aid. Only higher-competency stu-
dents, but not lower-competency ones, exhibit significantly better performance
associated with hint use. Among higher-competency students, requesting any
hints is linked to significantly higher performance (p = 0.007), with independent
positive effects for planning (p = 0.024) and debugging hints (p = 0.044).

5.3 Discussions

Our findings underscore a consistent association between planning hints and
higher performance. This aligns with metacognitive t heory, which emphasizes
planning as a critical step in problem-solving [9, 12, 16]. While the study did not
establish causality (students’ high intrinsic SRL skills could be a confounding
factor that caused both requesting of planning hints and higher final perfor-
mance), these results suggest potential instructional value from planning hints.

14 T. Phung et al.

In contrast, optimization hints are sometimes linked to lower performance, likely
due to students’ misuse, despite clear descriptions and availability of reference
(see Sect. 3.3). This highlights the need for AI-assisted learning systems to ensure
awareness of the available support and its alignment with their issues.

Our results differ from some studies that found hints more beneficial for
lower-competency students [3, 4]. This may be because lower-competency stu-
dents may have weaker SRL skills, making it harder to leverage hints effec-
tively. Additionally, since our hints are purposely Socratic and non-direct, lower-
competency students may learn less from t hem than higher-competency ones.
Future research should explore varying hint detail levels to fit different student
groups [27, 48].

6 Limitations

This work has several limitations. First, it was conducted in a single program-
ming course, where students could make multiple submissions, resulting in high
overall grades (>92%). This makes it challenging to isolate the impacts of AIMS
hints on student performance. Future work should examine AIMS hints in diverse
courses with varying grading schemes. Second, students’ under-utilization of
optimization hints limited our ability to assess their impact on students. How-
ever, this highlights an opportunity for future work on strategies to encourage
students to pursue mastery learning beyond correct solutions. Third, we did not
measure long-term learning gains. Future research should evaluate the long-term
effects using methods such as retention tests, delayed p ost-tests, or longitudinal
tracking. Fourth, we focused solely on button-based hints. Future work could
explore alternative interfaces, such as chatbots or voice assistants. Finally, we
investigated AIMS hints in isolation from other forms of support. Future stud-
ies should investigate their integration with complementary support, such as
instructor-led office hours, to create a more comprehensive learning environment.

7 Conclusions

This paper investigates the integration of metacognitive theory in AI-assisted
programming education through a hint system aligned with planning, moni-
toring, and evaluation phases. By designing three corresponding hint types–
planning, debugging, and optimization–and allowing students to select hints
within a quota, our approach not only tailors the support to students’ problem-
solving stage but also fosters students’ metacognitive awareness. A field study
reveals that students engage most with planning hints, which are consistently
linked to higher performance. However, students often request only one hint type
per question and, when facing harder tasks, request more debugging but not
more planning hints. This insight warrants future work on better metacognitive
guidance in student awareness. Our findings provide empirical evidence of the
synergy between AI and pedagogical theory in programming education, opening
avenues for future research on pedagogically informed AI-tutoring systems.

Applying Metacognitive Theory to AI-Assisted Programming Education 15

Acknowledgments. Funded/Co-funded by the European Union (ERC, TOPS,
101039090). Views and opinions expressed are however those of the author(s) only
and do not necessarily reflect those of the European Union or the European R esearch
Council. Neither the European Union nor the granting authority can be held respon-
sible for them.

References

1. Alasmari, N.J., Althaqafi, A.S.A.: Teachers’ practices of proactive and reactive
classroom management strategies and the relationship to their self-efficacy. Lang.
Teach. Res. 28, 2158–2189 (2024)

2. Alzaid, M., Hsiao, I.h.: Effectiveness of reflection on programming problem solving
self-assessments. I n: Frontiers in Education Conference (FIE) (2018)

3. Beal, C.R., Arroyo, I.M., Cohen, P.R., Woolf, B.P.: Evaluation of AnimalWatch: an
intelligent tutoring system for arithmetic and fractions. J. Interact. Online Learn.
9, 64–77 (2010)

4. Beal, C.R., Walles, R., Arroyo, I., Woolf, B.P.: On-line tutoring for math achieve-
ment testing: a controlled evaluation. J. Interact. Online Learn. 6, 43–55 (2007)

5. Bloom, B.S.: Learning for mastery. Instruction and curriculum. Regional education
laboratory for the Carolinas and Virginia, topical papers and reprints, number 1.
Evaluation Comment 1, n2 (1968)

6. Bonferroni, C.: Teoria statistica delle classi e calcolo delle probabilita. Pubbli-
cazioni del R istituto s uperiore di scienze economiche e commericiali di firenze 8,
3–62 (1936)

7. Bui, G., Susanto, N., Sibia, N., Zavaleta Bernuy, A., Liut, M., Petersen, A.: Do hints
enhance learning in programming exercises? Exploring students’ problem-solving
and int eractions. In: Proceedings of the Technical Symposium on Computer Science
Education (SIGCSE), vol. 2 (2024)

8. Choi, H., Jovanovic, J., Poquet, O., Brooks, C., Joksimović, S., Williams, J.J.:
The benefit of reflection prompts for encouraging learning w ith hints in an online
programming course. Internet High. Educ. 58, 100903 (2023)

9. Cohen, P.R., Feigenbaum, E.: Planning and problem solving. Stanford Univ ersity,
Department of Computer Science (1982)

10. Denny, P., et al.: Generative AI for education (GAIED): adv ances, opportunities,
and challenges. CoRR abs/2402.01580 (2024)

11. Ebrahimi, A., Kopec, D., Schweikert, C.: Taxonomy of novice programming error
patterns with plan, web, and object solutions. ACM Comput. Surv. 38, 1–24 (2006)

12. Eichmann, B., Goldhammer, F., Greiff, S., Pucite, L., Naumann, J.: The role of
planning in complex problem solving. Comput. Educ. 128, 1–12 (2019)

13. Fan, Y., et al.: Beware of metacognitive laziness: effects of generative artificial intel-
ligence on learning motivation, pro cesses, and performance. Br. J. Educ. Technol.
56, 489–530 (2024)

14. Flavell, J.H.: Metacognition and cognitive monitoring: a new area of cognitive-
developmental inquiry. Am. Psychol. 34, 906–911 (1979)

15. Gabbay, H., Cohen, A.: Combining LLM-generated and test-based feedback in a
Mooc for programming. I n: Proceedings of the Conference on Learning@ Scale
(L@S) (2024)

16. Gunzelmann, G., Anderson, J.R.: Problem solving: increased planning with prac-
tice. Cognit. Syst. Res. 4, 57–76 (2003)

16 T. Phung et al.

17. Hoffman, H.J., Elmi, A.F.: Do students learn more from erroneous code? Exploring
student performance and satisfaction in an error-free versus an error-full Sas R©
programming environment. J. Stat. Data Sci. Educ. 29, 228–240 (2021)

18. Holton, D., Clarke, D.: Scaffolding and metacognition. Int. J. Math. E duc. Sci.
Technol. 37, 127–143 (2006)

19. Hurst, A., et al.: GPT-4o system card. Arxiv Preprint Arxiv:2410.21276 (2024)
20. Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance a nalysis. J.

Am. Stat. Assoc. 47, 583–621 (1952)
21. Li, R., Che Hassan, N., Saharuddin, N.: College student’s academic help-seeking

behavior: a systematic literature review. Behav. Sci. 13, 637 (2023)
22. Liffiton, M., Sheese, B.E., Savelka, J., Denny, P.: CodeHelp: using large language

models with guardrails for scalable support in programming classes. In: P roceedings
of the Koli Calling International Conference on Computing Education Research
(2023)

23. Lohr, D., Keuning, H., Kiesler, N.: You’re (not) My type-can LLMs generate feed-
back of specific types for introductory programming tasks? J. Comput. Assist.
Learn. 41, e13107 (2025)

24. Loksa, D., et al.: Metacognition and self-regulation in programming education:
theories and exemplars of use. A CM Trans. Comput. Educ. (TOCE) 22, 39 (2022)

25. Ma, B., Chen, L., Konomi, S.: Enhancing programming education with ChatGPT:
a case study on student perceptions and interactions in a Python course. In: Pro-
ceedings of the Artificial Intelligence in Education (AIED) (2024)

26. Mallik, S., Gangopadhyay, A.: Proactive and reactive engagement of artificial intel-
ligence methods for education: a review. Front. Artif. Intell. 6, 1151391 (2023)

27. Mao, P., Cai, Z., Wang, Z., Hao, X., Fan, X., Sun, X.: The effects of dynamic and
static feedback under tasks with different difficulty levels in digital game-based
learning. Internet High. Educ. 60, 100923 (2024)

28. Marwan, S., Jay Williams, J., Price, T.: An Evaluation of the Impact of Auto-
mated Programming Hints on Performance and Learning. I n: Proceedings of the
Conference on International Computing Education Research (ICER) (2019)

29. Mood, A.M.: Introduction to the Theory o f Statistics. McGraw-hill (1950)
30. Pankiewicz, M., Baker, R.S.: Navigating compiler errors with AI assistance - A

study of GPT hints in an introductory programming course. In: Pro ceedings of the
Innovation and Technology in Computer Science Education (ITiCSE) (2024)

31. Park, E., Cheon, J.: Exploring debugging challenges and strategies using structural
topic model: a comparative analysis of high and low-performing students. J. Educ.
Comput. Res. 62, 2104–2126 (2025)

32. parsons, R, Hao, Q., Ding, l.: exploring differences in planning between students
with and without prior experience in programming. In: American Society for Engi-
neering Education Annual Conference & Exposition (ASEE) (2023)

33. Pearson, K.: X. On the criterion that a given system of deviations from the probable
in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling. London Edinburgh Dublin Philos.
Mag. J. Sci. 50, 157–175 (1900)

34. Phung, T., et al.: Generative AI for programming education: benchmarking Chat-
gpt, GPT-4, and human tutors. In: Proceedings of the C onference on International
Computing Education Research (ICER) - Volume 2 (2023)

35. Phung, T., et al.: Automating human tutor-style programming feedback: leverag-
ing GPT-4 tutor model for hint generation and GPT-3.5 student model for hint
validation. In: Proceedings of the International Learning Analytics and Knowledge
Conference (LAK) (2024)

Applying Metacognitive Theory to AI-Assisted Programming Education 17

36. Price, T.W., Zhi, R., Barnes, T.: Hint generation under uncertainty: the effect
of hint quality o n help-seeking behavior. In: Artificial Intelligence in Education
(AIED) (2017)

37. Rum, S., Ismail, M.A.: Metacognitive support accelerates computer assisted learn-
ing for novice programmers. J. Educ. Technol. Soc. 20, 170–181 (2017)

38. Saliba, L., Shioji, E., Oliveira, E., Cohney, S., Qi, J.: Learning with style: improv-
ing student code-style through better automated feedback. I n: Proceedings of the
Technical Symposium on Computer Science Education (SIGCSE) (2024)

39. Schraw, G., Moshman, D.: Metacognitive theories. Educ. Psyc hol. Rev. 7, 351–371
(1995)

40. Shin, Y., Jung, J., Zumbach, J., Yi, E.: The effects of worked-out example and
metacognitive scaffolding o n problem-solving programming. J. Educ. Comput. Res.
61, 073563312311744 (2023)

41. Stanton, J.D., Sebesta, A.J., Dunlosky, J.: Fostering metacognition to support
student learning and performance. CBE—Life Sci. Educ. 20, fe3 (2021)

42. Sun, D., Boudouaia, A., Yang, J., Xu, J.: Investigating students’ programming
behaviors, interaction qualities and perceptions through prompt-based learning in
ChatGPT. Humanit. Soc. Sci. Commun. 11, 1–14 (2024)

43. Vieira, C., Magana, A.J., Roy, A., Falk, M.: Student explanations in the context
of computational science and engineering education. Cognit. Instruct. 37, 201–231
(2019)

44. Volet, S.E., Lund, C.: Metacognitive instruction in introductory computer pro-
gramming: a better explanatory construct for p erformance than traditional factors.
J. Educ. Comput. Res. 10, 297–328 (1994)

45. Wang, S., Mitchell, J.C., Piech, C.: A large scale RCT on effective error messages in
CS1. In: P roceedings of the Technical Symposium on Computer Science Education
(SIGCSE) (2024)

46. Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q.V., Zhou,
D., et al: Chain-of-thought prompting elicits reasoning in large l anguage models.
In: Advances in Neural Information Processing Systems (NeurIPS), vol. 35 (2022)

47. Wiggins, J.B., et al.: Exploring novice programmers’ hint requests in an intelligent
block-based coding environment. In: Pro ceedings of the Technical Symposium on
Computer Science Education (SIGCSE) (2021)

48. Xiao, R., Hou, X., Stamper, J.: Exploring how multiple levels of GPT-generated
programming hints support or disappoint novices. I n: Extended Abstracts Of The
Conference On Human Factors In Computing Systems (CHI) (2024)

49. Karaoglan Yilmaz, F.G., Yilmaz, R.: Learning analytics intervention improves stu-
dents’ engagement in online learning. Technol. Knowl. Learn., 1–12 (2021). https://
doi.org/10.1007/s10758-021-09547-w

50. Zamfirescu-Pereira, J., Qi, L., Hartmann, B., DeNero, J., Norouzi, N.: Conversa-
tional Programming with LLM-Powered Interactive Support in an Introductory
Computer Science Course. NeurIPS 2023 Workshop on Generative AI for Educa-
tion (GAIED) (2023)

