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Abstract. The growing adoption of generative AI in education highlights 
the need to integrate established pedagogical principles into AI-assisted 
learning environments. This study investigates the potential of metacog-
nitive theory to inform AI-assisted programming education through a hint 
system designed around the metacognitive phases of planning, monitor-
ing, and evaluation. Upon request, the system can provide three types of 
AI-generated hints–planning, debugging, and optimization–to guide stu-
dents at different stages of problem-solving. Through a study with 102 stu-
dents in an introductory data science programming course, we find that 
students perceive and engage with planning hints most highly, whereas 
optimization hints are rarely requested. We observe a consisten t associa-
tion between requesting planning hints and achieving higher grades across
question difficulty and student competency. However, when facing harder
tasks, students seek additional debugging but not more planning support.
These insights contribute to the growing field of AI-assisted programming
education by providing empirical evidence on the importance of pedagog-
ical principles in AI-assisted learning.

Keywords: Programming Education · Feedback Generation · 
Metacognitive T heory · Generative AI

1 Introduction 

Recent advancements in generative AI have sparked significant interest i n the
field of programming education [10, 25, 34, 45], especially in the generation of 
personalized feedback [23, 35, 45, 48]. However, existing studies often focus on 
technical correctness [15] or student preference [25, 30] and overlook the impor-
tance of grounding AI-generated feedback in well-established pedagogical theo-
ries, potentially limiting t he effectiveness of such feedback in student learning.

To address this gap, we propose enhancing AI-generated hints through t he
use of metacognitive scaffolds [24, 40, 44]. Metacognitive scaffolds are instruc-
tional support mechanisms that help student s plan, monitor, and evaluate their
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Fig. 1. Overview of requested hints (725 hints in 366 student-question pairs). Through-
out the paper, P, D, and O denote a planning, debugging, and optimization hint, 
respectively. ! marks the beginning and • marks the end of problem-solving. The
graph displays sequences of hints, link sizes depicting counts.

learning processes while fostering self-regulation and strengthening a daptive
problem-solving skills [14, 18, 39]. These scaffolds are crucial in programming 
education, where students often struggle with s tructuring approaches to solv-
ing (planning) [11, 32], identifying and fixing errors (monitoring) [31], and opti-
mizing solutions (evaluation) [38]. By grounding AI-generated hints in these 
metacognitive phases, we aim to provide not only technical assistance but also 
structured yet flexible support to promote students’ metacognitive development. 
Specifically, we design three corresponding types of hint: planning, debugging, 
and optimization, which we collectively refer to as AI-generated hints based on 
Metacognitive Scaffolds (AIMS hints). To foster students’ metacognitive aware-
ness of their p roblem-solving stages, we adopt a learning-assisted approach in
which we set a quota for total hints per question and let the students decide for
themselves which hint type to request based on their needs. Figure 1 provides an 
overview of how students utilized these hints in our deployment of this system.

Our study is centered on the following research questions:

RQ1: How do AIMS hints impact student s’ help-seeking behaviors?
RQ2: How do those behaviors relate to students’ problem-solving performance?

We examine these questions across all students and subsets based on question 
difficulty and student competency levels. Our contributions are as follows:

• Hint and system design. Using metacognitive theory, we design a hint 
system that offers three types of AIMS hints: planning, debugging, and opti-
mization, and evaluate these hints through a classroom field study.

• Student behavior analysis. We analyze student help-seeking behaviors, 
revealing trends such as students value planning hints highly but often under-
utilize them in favor of debugging hints, especially when facing harder tasks.

• Student performance analysis. We find that planning hints are linked to 
better performance, notably for higher-competency students.

• Code release. To enhance reproducibility and aid future research, we pub-
licly release the implemen tation of our AIMS hint generation techniques.

By integrating metacognitive scaffolds into AI-generated hints, this work not 
only contributes to a deeper understanding of how personalized AI support can 
enhance programming education but also provides practical insights for designing
pedagogically-grounded educational AI systems.
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2 Related Work 

Metacognitive Scaffolds and Self-regulated Learning. Many efforts have 
been made to incorporate metacognitive scaffolds in programming education. 
The benefits of metacognition on learning b ehaviors and performance have been
consistently shown through research [8, 37, 40, 43, 44, 49]. For example, Vieira 
et al. [43] found that novice computer science students wrote longer self-
explanation in-code comments compared to experienced peers because they sa w
self-explaining as a learning opportunity. Choi et al. [8] showed that prompting 
reflection after programming tasks was correlated with better learning percep-
tion and performance on both immediate and delayed post-tests. Yilmaz and
Yilmaz [49] showed that students who received personalized metacognitive feed-
back weekly engaged significantly more in a Computer I course. Inspired by these 
insigh ts, we ground in metacognitive theory to design AI-generated scaffolding
hints.

AI-Generated Feedback in Programming Education. Recent research 
has explored AI-generated feedback in programming education [45, 50]. Phung et 
al. [35] found that providing symbolic information such as the buggy output and 
fixed programs in prompts can improve the quality of AI-generated debugging
hints. Lohr et al. [23] showed that AI can be directed to provide feedback that 
focuses on specific aspects, such as knowledge about task constraints or per-
formance. Xiao et al. [48] explored students’ perceptions of hints with varying 
detail levels, revealing that their effectiveness depends on context and that high-
quality next-step and debugging hints do not always facilitate student progress. 
Building on this line of work, our study employs AI techniques that utilize sym-
bolic information to generate different types of hints tailored to students’ needs.
Our hint system utilizes a button-based interface, as opposed to a chat-based
one [25, 42], since the latter’s pedagogical e ffects are still unclear.

Students’ Help-Seeking Behaviors with Automated Hints. Several 
studies have examined how students interact with automated hints [21, 47]. Mar-
wan et al. [28] found that data-driven next-step hints improved immediate per-
formance, and when paired with self-explanation prompts, led to learning gains. 
Expanding on this, we investigate the a ssociation between AI-generated hints
and student performance. Price et al. [36] found that the quality of initial hints 
positively correlates with help abuse. To address this, we set a fixed quota for h int
use to prevent over-reliance on help. Wiggins et al. [47] characterized student’s 
hint-seeking behavior along two axes of elapsed time and c ode completeness,
while Bui et al. [7] explored different hint formats, including text and skeleton 
code. Our study extends this research by analyzing additional aspects, including 
engagement, perception, and hint request sequence in the context of AIMS hints.

AI Support and Metacognition. Recently, concerns have arisen that AI 
technologies might reduce students’ engagement in metacognitive practices, a
concept referred to as Metacognitive laziness [13]. Our work explicitly addresses 
this by integrating metacognitive theory into AI-generated hints, aiming to sup-
port self-regulated learning (SRL) skills development rather than replace it.
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Fig. 2. AIMS hint types with the descriptions provided to students.

3 Study Setup 

This section outlines the study context, our proposed AIMS hints, the deploy-
ment, and methods t o estimate question difficulty and student competency.

3.1 Course and Studen ts

Course Overview. This study was conducted in a Python-based introductory 
data science course as part of an online Master’s program at the University of 
Michigan. The four-week course featured weekly assignments covering key topics 
such as regular expressions, pandas data frame manipulation, Excel processing, 
and CSV file handling. Each assignment, delivered as a Jupyter notebook, con-
sisted of three to four programming questions (14 in total), requiring students
to complete Python functions for specific tasks. Assignments were due weekly,
and students could submit multiple times before the deadline, with their highest
score counting toward the final grade.

Student Overview. Overall, 102 students enrolled in the course: 71 males, 
27 females, and four unspecified. Their ages range from 18 to 58 (mean = 32, 
stddev = 8.5). Requesting hints was voluntary, with no additional incentives 
or penalties, and instructors were unaware of whether or how often students 
requested hints. Students were informed about the research aspect of the initia-
tive, including anonymous d ata recording and the AI-generated nature of hints
which might not always be correct. This study was deemed exempt from oversight
by the Institutional Review Board under application number HUM00251143.

3.2 Hint Types and AI-Generation T echniques

AIMS Hints. We mapped the three metacognitive phases of planning, moni-
toring, and evaluation onto disciplinary terms of planning, debugging, and opti-
mization. Each hint type was designed with a specific goal: planning hints assist 
in initial strategy formulation, debugging hints aid in issue identification and r es-
olution, and optimization hints foster code quality reflection and improvement
for students aiming to exceed assignment expectations (see Fig. 2). 

Techniques for Generating AIMS Hints. Each hint type is generated by 
a technique, all with careful consideration of incorporating “guard-rails” instruc-
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Fig. 3. Interaction between a student and our hint system for requesting a hint.

tions [ 22] to prevent the AI model (GPT-4o [19]) from revealing t he solutions.1
Our technique for debugging hints is adapted from previous studies that showed 
good performance in data science programming education [35, 50]. It follows a two-
phase process: First, it extracts symbolic information including (1) the buggy out-
put (obtained from running the student’s program) and (2) a repaired program 
(obtained fromrequestingtheAImodel).Second, ituses this informationalongwith 
the  student’s  code and any reflection (detailed in Sect. 3.3)  to  prompt  the  AI  to  gen  -
erate an explanation (leveraging Chain-of-Thought [46]) and a Socratic-style hint 
for a single bug (to be provided to the student). Since there were no existing tech-
niques for generating high-quality planning and optimization hints, we adjust this 
technique for the other two hint types. For planning hints, we modify the prompt’s 
language to focus on problem-solving steps rather than debugging and remove the 
repaired p rogram to shift emphasis away from errors. For optimization hints, we
follow a similar two-phase process but replace the repaired program with an AI-
generated optimized program–focusing on short running time while still requiring
correctness.

3.3 Hint System and Studen t Interaction

AIMS Hint System. We develop a hint system consisting of two main compo-
nents: (1) a backend server for generating hints using the techniques introduced in
Sect. 3.2 and (2) a JupyterLab extension as the interface for interacting with stu-
dents. To prevent over-reliance on AI and foster students’ metacognitive awareness, 
we set a quota limit of five hints per question and allow students to choose the type 
of hint to request. The extension displays three buttons below each assignment 
question, enabling students to request planning, debugging, or optimization hints. 
Before the course, the instructor intro duced the hint systemanddemonstrated how
to use it to the class. Students could always click a “?” button located next to the
hint buttons to viewdescriptions of the hint types (as inFig. 2). The first time a stu-
dent requests a hint, a “Consent” pop-up informs them about the research aspect of
the system (see Sect. 3.1). Students can only proceed to request hints after agreeing 
to this notice. To ensure easy access to previous hints, each hint is stored in a col-
lapsible widget below the corresponding question’s hint buttons. When a studen t
reopens a notebook, these widgets are collapsed by default and can be expanded
with a click to revisit previous hints.

Student Interaction. Figure 3 demonstrates the interaction between stu-
dents and our system for requesting hints. When requesting hints, students are 
encouraged to reflect on their progress or issues. These reflections serve dual pur-
poses: promoting students’ engagement by prompting them to articulate their

1 https://github.com/machine-teaching-group/aied2025-plan-more-debug-less. 
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Fig. 4. Examples of hint types: student reflections and received hin ts in the study.

thoughts and providing the AI model with context to generate a relevant hint. 
Once the backend generates a hint, it is sent back to the interface and displayed 
to the student, accompanied by two feedback buttons: “thumb up” and “thumb
down”, allowing the student to rate the hint as helpful or unhelpful, respectively.

3.4 Data C ollection

We collected comprehensive data on student behavior and performance, includ-
ing hint requests and revisits, assignment submissions, and final solving status. 
Of 102 students, 101 (99%) a ctivated the JupyterLab extension, and 76 (75%)
requested at least one hint. Figure 4 shows examples of provided hints. Figure 5 
provides a breakdown of students and hints across 14 assignment questions.

3.5 Question Difficulty and Studen t Competency

To analyze the impacts of AIMS hints across varying conditions, we categorize ques-
tions by difficulty and students by competency. Question difficulty is estimated 
using past student performance in two prior iterations of the same course: the easier 
(harder) group consists of four highest- (lowest-) scored questions, one per assign-
ment. Student competency is approximated based on the number of attempts until 
solving all questions in Assignment 1: fewer attempts indicate higher competency.
We designate the top third (34 students) as the higher-competency group and the
bottom third (34 students) as the lower-competency group. Since Assignment 1
served as a proxy, it is excluded from competency-based analyses.
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Fig. 5. Overview of students and hint requests. The orange dots and the right y-axis 
indicate the number of students who requested at least one hint (of any type) for 
each question. The stacked bars and the left y-axis represent the total number o f hint
requests per question, categorized by AIMS hint types. In total, students requested 258
planning, 411 debugging, and 56 optimization hints. (Color figure online)

4 RQ1: Impacts of AIMS Hints on Help-Seeking Behavior 

This section addresses RQ1 by outlining our analysis setup (Sect. 4.1), presenting 
results (Sect. 4.2), and discussing key findings (Sect. 4.3). 

4.1 Analysis S etup

To evaluate the impact of AIMS hints on student help-seeking behavior, we 
decompose RQ1 into three sub-questions: [RQ1a]: How do students engage with 
and perceive AIMS hints?, [RQ1b]: What behavioral patterns emerge in students’ 
interactions with AIMS hints?, and [RQ1c]: How do these patterns vary based
on question difficulty and student competency?

For RQ1a, engagement is measured by contemplation time and hint revisits, 
while perception is assessed through students’ hint ratings. The contemplation 
time is defined as the time between receiving a hint and performing the next 
major action (i.e., requesting another hin t or submitting a solution). To exclude
irrelevant delays such as students taking a break, only durations up to t = 1
hour are considered for analysis.2 Hint revisits are quantified by counting the 
number of times a student expands hint widgets to view previous hints.

For RQ1b, we analyze the sequence of requested hint types, the frequency 
of a type being present in the sequence, the first-requested type, and the most-
requested type. Each of these is counted based on all student-question pairs.

For RQ1c, we examine how hint sequences and the presence of hint types 
vary across question difficulty and student competency (as defined in Sect. 3.5). 

4.2 Results 

Engagement and Perception of AIMS Hints. Figure 6 summarizes engage-
ment and perception results. A Mood’s median test [29] reveals a significant
2 We note that other choices, such as t =  0.5 or t = 2 hours also yield similar results.



10 T. Phung et al.

(a) Contemplation time (b) Hint revisits (c) Hint rating 

Fig. 6. Results for RQ1a: Student engagement and perception of hints. (a) demon-
strates the amount of time students contemplated after receiving a hint. (b) shows the 
n umber of revisits per hint. (c) presents the average rating of hints.

(a) Hint sequence (b) Type present (c) First type (d) Majority type 

Fig. 7. Results for RQ1b: Patterns of student hint usage. In all plots, y-axis represents 
the counts of student-question pairs. (a) displays the most common hint sequences; 
(b), (c), and (d) show the number of times a hint typ e is present in a sequence, is the
first in a sequence, and is the majority in a sequence, respectively.

difference in contemplation time across hint types (p =  0.002). Post ho c pair-
wise comparisons with Bonferroni correction [6] confirm that the contemplation 
time on planning hints (median = 14.0 minutes) is longer than debugging hints 
(median = 7.1 minutes, p =  0.006). For hint revisits, a Kruskal-Wallis H test [20] 
indicates a significant difference (p =  0.009), with Dunn’s post hoc tests using 
Bonferroni correction confirming more revisits for planning than for debugging
hints (p = 0.015). Similarly, a χ2 test [33] detects a significant difference in 
hint rating (p =  0.003), with pair-wise comparison using a Bonferroni correction 
confirming higher ratings for planning than for debugging hints (p =  0. 005).
Optimization hints, with smaller sample sizes (33–56), do not show any signifi-
cant differences.

Help-seeking Patterns. Fig. 7 shows students’ help-seeking patterns. Nine 
out of ten most frequent hint sequences consist of a single hint type, with 
debugging hints being requested the most, followed by planning hints, while 
optimization hints were rarely used. When both planning and debugging hints
were sought, planning hints were more likely to be requested first, aligning with
metacognitive phases [39]. Notably, 43% of optimization hints (24 out of 56) 
were requested in isolation. Upon investigation of students’ code and reflections, 
these cases often belonged to high-performing students who solved without hints
and then sought further improvements. However, some other students seemed to
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mistakenly request these optimization hints when they n eeded debugging sup-
port.

Behavioral Patterns by Difficulty and Competency. Figure 8 com-
pares help-seeking behaviors based on question difficulty (Figs. 8a  and 8b) and 
student competency (Figs. 8c  and 8d). As question difficulty increases, students 
request more debugging hints, while planning hint usage remains constant. In 
contrast, optimization hints were requested more often for easier questions (in 20 
student-question pairs) than harder ones (10 pairs). Regarding student compe-
tency, higher-competency students request more hints overall, particularly plan-
ning hints, compared to their lower-competency peers.

(a) Easier questions: 181 hints. (b) Harder questions: 225 hints. 

(c) Lower-competency students: 160 hints. (d) Higher-competency students: 200 hints. 

Fig. 8. Results for RQ1c: Behaviors by difficulty and competency. In each subfigure, 
the left shows Hint sequence and the right shows Type present. (a) and (b) present
results by difficulty while (c) and (d) present results by competency.

4.3 Discussions 

Our findings reveal key patterns in students’ help-seeking behavior and hint 
usage. The high engagement and positive perception of planning hints suggest 
that structured guidance at the planning stage can be highly b eneficial. However,
it remains overlooked in many existing feedback systems, which primarily focus
on debugging support [30, 35]. By emphasizing planning, educators and AI sys-
tems could better scaffold students’ problem-solving processes and reduce inef-
ficient trial-and-error cycles. Despite the high perceived value of planning hints, 
students requested debugging hints more often, especially for harder questions.
This suggests reactive rather than proactive strategies [1, 17, 26], where students 
rely on troubleshooting rather than strategic planning. While debugging is an
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essential skill, over-reliance on it may hinder deeper conceptual understanding. 
Future AI-assisted learning environments should promote proactive planning, 
encouraging students to articulate their problem-solving strategies before coding. 
Optimization hints, which were aimed at mastering skills rather than improving 
grades, were underutilized (8% of total requests). Further research is needed to
make them more attractive and effective, fostering student mastery learning [5]. 

Students predominantly requested a single hint type per question, indicating 
a potential lack of metacognitive awareness–they may not always recognize when
they need planning, monitoring, or evaluation support [24, 41]. The variation in 
hint-seeking behavior by question difficulty further reinforces this issue. While 
debugging hints were requested more for harder questions, planning hin t usage
remained unchanged, even though structured planning is particularly useful for
complex tasks [12]. Intelligent tutoring systems could use adaptive prompts or 
reflective exercises to help students better assess their difficulties [2, 8]. Addition-
ally, designing interventions that make planning more explicit–such as requiring 
students to d raft pseudocode before coding–could help bridge the gap.

The difference in hint usage between higher- and lower-competency students 
may provide further insights into how metacognition contributes to learning. 
While some studies reported that weaker students require more help [3, 4], our 
results show that higher-competency students requested more hints overall, espe-
cially planning hints. This may be because they are more persistent in problem-
solving and thus, are more willing to engage with available support. In contrast, 
lower-comp etency peers may be more prone to give up earlier. This difference
likely contributes to performance disparities, as discussed next.

5 RQ2: AIMS Hints and Performance 

Building on the behavioral patterns identified in RQ1, this section addresses 
RQ2: ho w those patterns relate to student problem-solving performance.

5.1 Analysis S etup

We break RQ2 into two sub-questions: [RQ2a]: How do students’ interaction pat-
terns with AIMS hints relate to their problem-solving performance? and [RQ2b]: 
How do these effects vary by question difficulty and studen t competency? To
answer these, we focus on students’ final solving rates in relation to hint usage.

5.2 Results 

Hint Usage and Overall Performance. As shown in Fig. 9a, requesting plan-
ning hints is associated with significantly higher performance than no hints 
(p =  0.013). Other types (debugging, optimization) show no significant effects.

Performance Variation by Difficulty and Competency. Across all dif-
ficulty and competency conditions, planning hints are consistently (even though 
not always significantly) associated with higher performance than no hints (see
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(a) Stu: all, Ques: all (b) Stu: all, Ques: easy (c) Stu: all, Ques: hard 

(d) Stu: lower, Ques: all (e) Stu: lower, Ques: easy (f) Stu: lower, Ques: hard 

(g) Stu: higher, Ques: all (h) Stu: higher, Ques: easy (i) Stu: higher, Ques: hard 

Fig. 9. Results for RQ2: Performance by help-seeking behavior. The dashed line depicts 
the average overall performance of the condition; the five bars represent no hint 
requested, any type requested, and each type present in the sequence of requested 
hints (i.e., Type present). The vertical lines indicate standard errors; * indicates a
significant difference in performance to the ‘No’ group w.r.t a χ2 test with p < 0.05,
while ** indicates p < 0.01. Y-axes are plotted from 50%.

Fig. 9). In contrast, optimization hints are linked to lower performance on easier 
questions (p =  0.039), particularly by lower-competency students (p =  0.003). A 
closer examination of code and reflections reveals that in most of these cases, stu-
dents misused optimization hints for debugging aid. Only higher-competency stu-
dents, but not lower-competency ones, exhibit significantly better performance 
associated with hint use. Among higher-competency students, requesting any
hints is linked to significantly higher performance (p = 0.007), with independent
positive effects for planning (p = 0.024) and debugging hints (p = 0.044).

5.3 Discussions 

Our findings underscore a consistent association between planning hints and 
higher performance. This aligns with metacognitive t heory, which emphasizes
planning as a critical step in problem-solving [9, 12, 16]. While the study did not 
establish causality (students’ high intrinsic SRL skills could be a confounding 
factor that caused both requesting of planning hints and higher final perfor-
mance), these results suggest potential instructional value from planning hints.
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In contrast, optimization hints are sometimes linked to lower performance, likely 
due to students’ misuse, despite clear descriptions and availability of reference
(see Sect. 3.3). This highlights the need for AI-assisted learning systems to ensure 
awareness of the available support and its alignment with their issues.

Our results differ from some studies that found hints more beneficial for
lower-competency students [3, 4]. This may be because lower-competency stu-
dents may have weaker SRL skills, making it harder to leverage hints effec-
tively. Additionally, since our hints are purposely Socratic and non-direct, lower-
competency students may learn less from t hem than higher-competency ones.
Future research should explore varying hint detail levels to fit different student
groups [27, 48]. 

6 Limitations 

This work has several limitations. First, it was conducted in a single program-
ming course, where students could make multiple submissions, resulting in high 
overall grades (>92%). This makes it challenging to isolate the impacts of AIMS 
hints on student performance. Future work should examine AIMS hints in diverse 
courses with varying grading schemes. Second, students’ under-utilization of 
optimization hints limited our ability to assess their impact on students. How-
ever, this highlights an opportunity for future work on strategies to encourage 
students to pursue mastery learning beyond correct solutions. Third, we did not 
measure long-term learning gains. Future research should evaluate the long-term 
effects using methods such as retention tests, delayed p ost-tests, or longitudinal
tracking. Fourth, we focused solely on button-based hints. Future work could
explore alternative interfaces, such as chatbots or voice assistants. Finally, we
investigated AIMS hints in isolation from other forms of support. Future stud-
ies should investigate their integration with complementary support, such as
instructor-led office hours, to create a more comprehensive learning environment.

7 Conclusions 

This paper investigates the integration of metacognitive theory in AI-assisted 
programming education through a hint system aligned with planning, moni-
toring, and evaluation phases. By designing three corresponding hint types– 
planning, debugging, and optimization–and allowing students to select hints 
within a quota, our approach not only tailors the support to students’ problem-
solving stage but also fosters students’ metacognitive awareness. A field study 
reveals that students engage most with planning hints, which are consistently 
linked to higher performance. However, students often request only one hint type 
per question and, when facing harder tasks, request more debugging but not
more planning hints. This insight warrants future work on better metacognitive
guidance in student awareness. Our findings provide empirical evidence of the
synergy between AI and pedagogical theory in programming education, opening
avenues for future research on pedagogically informed AI-tutoring systems.
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